企業檔案
- 會員類型:免費會員
- 工商認證: 【已認證】
- 最后認證時間:
- 法人:
- 注冊號:
- 企業類型:生產商
- 注冊資金:人民幣500萬
聯系我們
聯系人:徐經理
熱門標簽
技術文章
18 萬葉片寫就植物家譜 科學家利用拓撲學探究樹葉形狀影響因素
現在科學家已經描繪了一個來自全世界 75 個地點的 141 個植物家族的 18.2 萬種樹葉的地圖,以便講述植物的故事。利用這一地圖,研究人員能以 14.5% 的準確率從樹葉的形狀估計來源地點,以 27.3% 的準確率預測科屬,遠比常規的樹葉形狀描繪方法準確。
研究人員希望這一方法能幫助他們探究樹葉形狀的影響因素,并有望通過化石中的形狀推斷古代的氣候狀況。“這個數據集意義重大。”美國得州貝勒大學古植物學家 Dan Peppe 表示,“我們離自動測量葉片形狀、重構古代氣候和植物分類更近了一步。”
該研究結果發布在近日的 bioRxiv 上。該研究的作者、植物形態學家 Dan Chitwood 也在日前得州沃斯堡舉行的 2017 年植物學大會上發表了相關結果。
Chitwood 曾就職于密蘇里州圣路易斯 Donald Danforth 植物科學中心,他的團隊為植物地圖的繪制搜集了包括葡萄和番茄在內的植物種類數據,以及有關族群和地點的廣泛分類表。
然后,研究人員使用一種名為持續同調的拓撲學算法分析每片樹葉的形狀。根據周圍像素的密度,該方法會賦予圖片的每一個像素一個值,然后把樹葉分成 16 份并分析這些數值出現的規律。*后,研究人員用這些數據繪制形狀與地理位置在族群間的關系。
Chitwood 的*終目標是重組樹葉的“形態空間”,也就是所有可能的形狀所組成的數據集。“如果你能測量地球上現在和過去存在的所有樹葉,結果會是隨機的嗎?”他問道,“會有從未出現過的形狀嗎?從未出現的原因是否因為植物無法生長出這種形狀?”
實際上,持續同調在各方面有廣泛應用,從神經網絡分布到音樂樂句結構,許多結構圖像分析中都有它的影子。Chitwood 希望它也能為植物分析提供線索,其他科學家也表示同意。
奧地利維也納大學植物分類學家 Yannick Stadler 也正用此方法分析花朵的 X 光圖像,并希望能克服傳統方法的缺點——在常規的分類學方法中,科學家通常把重復出現的圖像標記為節點,并分析規律。
Stadler 表示,這些手段在動物身上十分有用,因為動物身上有明顯的標記,例如關節、眼角和鼻尖等,但花朵通常有著順滑而流暢的彎曲形態,所以人們很難做出標記。“葉片和花朵都有巨大挑戰。這讓我們必須尋找新方法。”他說。
包括 Peppe 在內的古植物學家一直設法將樹葉化石的分析過程自動化。目前,對植物化石節點的定位還需要科學家手動進行。
除了植物地圖之外,還有許多項目致力于分析植物特征——葉片、花朵和果實等,以明晰植物的分類。例如,一個叫作 Pl@ntNet 的項目就通過用戶上傳手機 App 的方式搜集了大量植物圖片。法國農業發展研究中心植物學家 Pierre Bonnet 表示,目前通過機器學習,該項目已分析了 58 萬張來自 1.3 萬種植物的圖片。
Pl@ntNet 研究者、法國自動化和計算機科學研究所的 Alexis Joly 表示,該軟件在辨識植物種類上比 Chitwood 的地圖更勝一籌,但 Pl@ntNet 還未開始研究樹葉的形狀。
而 Chitwood 則希望把拓撲分析得到的結果應用到機器學習中,看看這樣能否增加其科屬分類和地理位置預測的準確度。但他表示,自己對形狀本身更感興趣。
Stadler 提到,在很長時間內,科學家對植物的分類逐漸變得束手無策。然而,隨著科學家對植物的細節特征投入更多的研究(特別是谷物)并開始探究基因和環境的影響,該領域正在開始復興。
“分類學正在重生。”Stadler 表示,“我認為通過對基因數據的研究,我們的未來一片光明。
原創作者:齊一生物科技(上海)有限公司